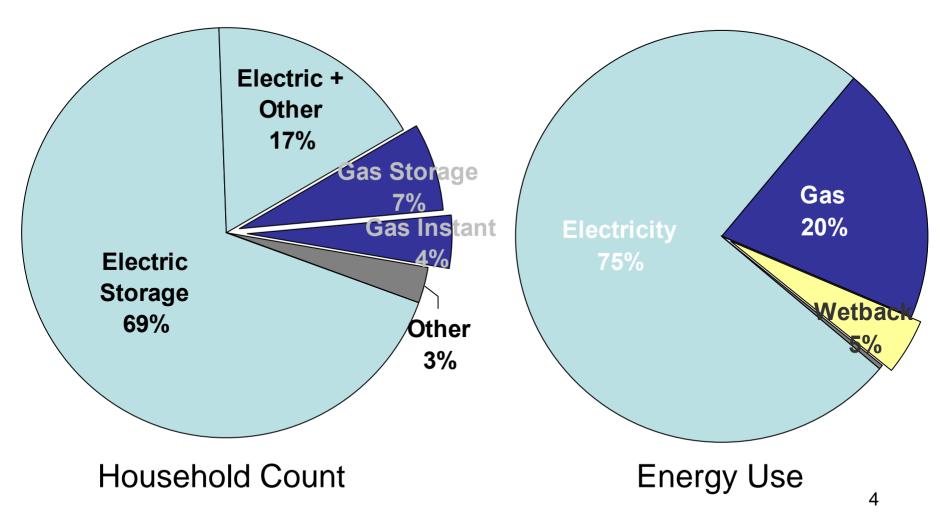


Domestic Hot Water Household Energy End-use Project (HEEP)

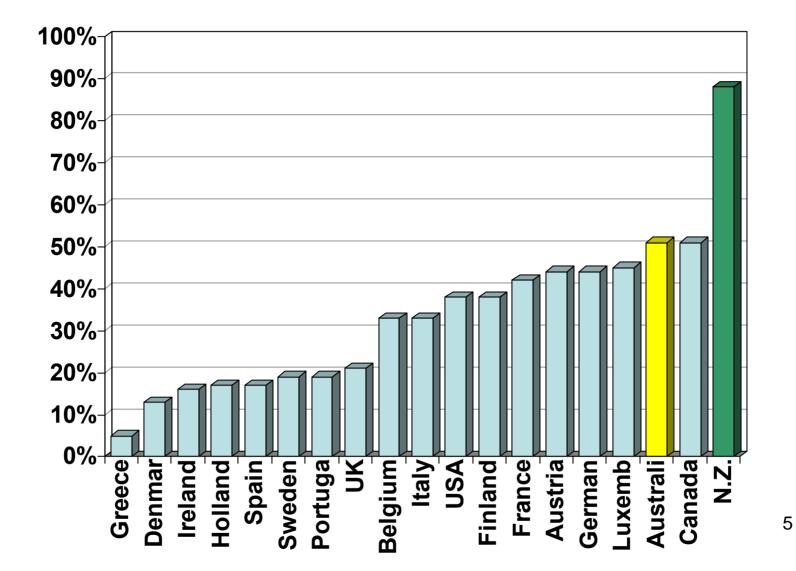
Nigel Isaacs, BRANZ Ltd.

Overview

- Water heating fuels
- International comparison
- What drives hot water energy use?
- Standing losses
- Gas vs. electric hot water energy use
- Dangerously hot (electric) water
- Energy efficiency & fuel swap opportunities



Hot water cylinders



Water Heating Fuels

19 Country Comparison Use of Electric DHW

Energy use distribution

Fuel	Bottom 20%		Тор 20%	
	< kWh/yr	% energy	> kWh/yr	% energy
Electricity	1,600	9%	3,750	37%
Gas	3,300	13%	7,300	27%
Wetback	180	3%	1,200	55%
All fuels	1,820	9%	4,300	37%

Bigger users use a lot more than small users

- Wetbacks show greatest skew
- Top 20% house each use ~ 2 x as Bottom 20%
- Water efficiency to reduce water & energy use

Impact of Occupancy

Occupancy	Average	% Households
(Person)	(kWh/yr)	
1-3	2,590	56%
Over 3	4,370	43%
All	3,130	100%

3+ person households use 70% more hot water

- Larger households use more hot water:
- ~90% 3+ households > 2,000 kWh/yr
- ~60% of 1-3 households > 2,000 kWh/yr

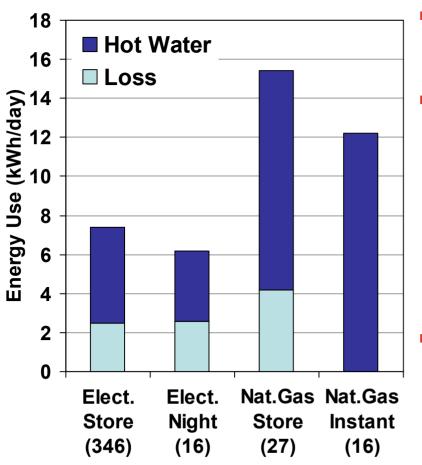
Search for NZ oldest cylinder (Thanks to Radio NZ National, 'Sounds Historical')

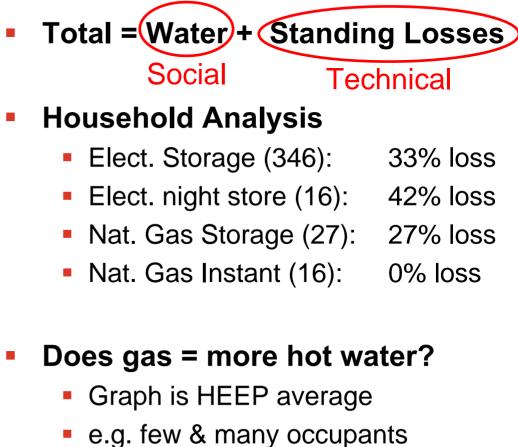
Date Location Type In use 1920s Wetback Stewart Island $\mathbf{\Lambda}$ 1930s **Electric dairy** Rahotu \mathbf{N} 1934 Wetback Taranaki \checkmark Christchurch 1938 **Electric storage** \mathbf{N} 1930s Gas califont Otaki

Copper, low pressure cylinders

- LONG life (depend on water quality)
- Modern mains pressure, steel cylinders
 - Likely to have shorter life

Changes over 35+ years


Bathing habits changing away from bath


- 1971/2: 74% Bath only, or bath ≥ shower
- HEEP: 6%
- Change from 'batch' to 'flow'
- Cylinder volume increasing
 - 1971/2: 56% 135 litre, 35% 180 litre
 - HEEP: 40% 45%
 - In 1990s 180 litre became more popular

Analysis base – ONLY houses with electric water heating 9

BRANZ

Standing Losses

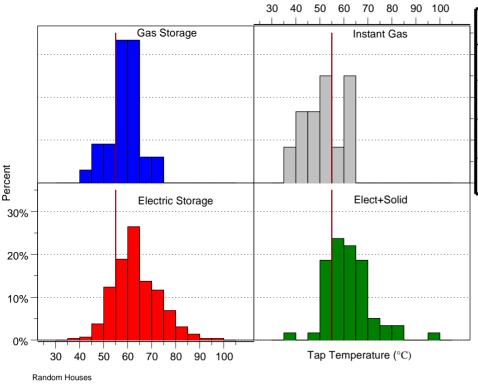
Critical to understand data

Gas vs. non-Gas energy use?

Must compare on same basis

- Standing losses 4.2 gas vs. 2.5 elect kWh/day
- Appliance efficiency 80% vs. 100%
- Household differences (linear model, r² =42%)
 - Number occupants +24%
 - Floor area +13%
 - Life stage -3% to + 9% +14%
 - Shower water use
 - Use of gas
- Linear model on same average house
 - Non-gas use = 2,100 kWh/yr
 - Increase = 981 kWh/yr * 44% = 414 kWh/yr
- Gas = +20% hot water energy

+44%


Other Differences Gas vs. Electric

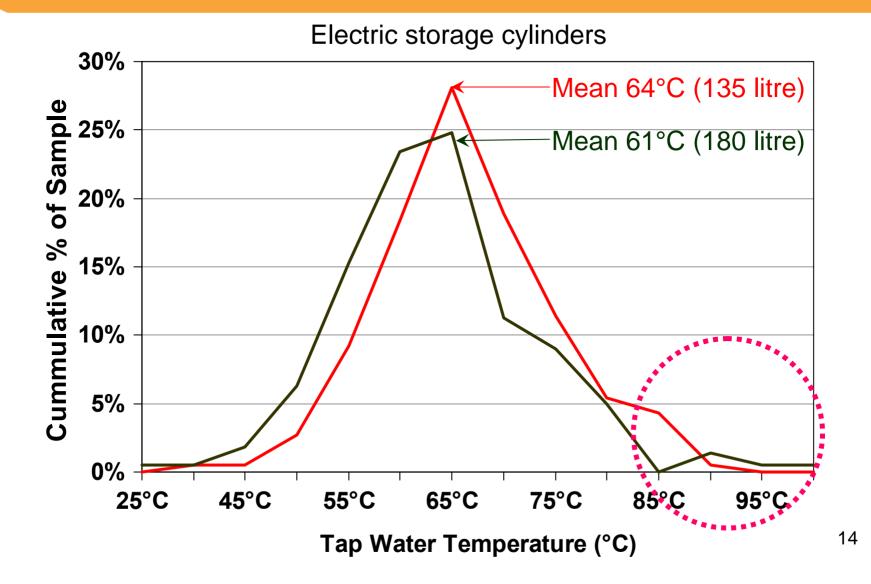
Fuel type & service

- 78% low pressure water (mainly electric)
- 22% mains pressure water (mainly gas)
- Measured shower flow rates:
 - Low pressure
 7 l/min (avg)
 20 l/min (max)
 - Mains pressure 12.5 l/min (avg) 30 l/min (max)
- Higher pressure = higher flow = more energy
- Reduce 18 I/min to 9 I/min for 5 min shower
 - Save: 18 c/shower energy + 16.2 c/shower (water)
 - 34 c/ shower = \$124 per year per daily shower
 - Low-flow shower head ~ \$40

Water Temperature & Fuels

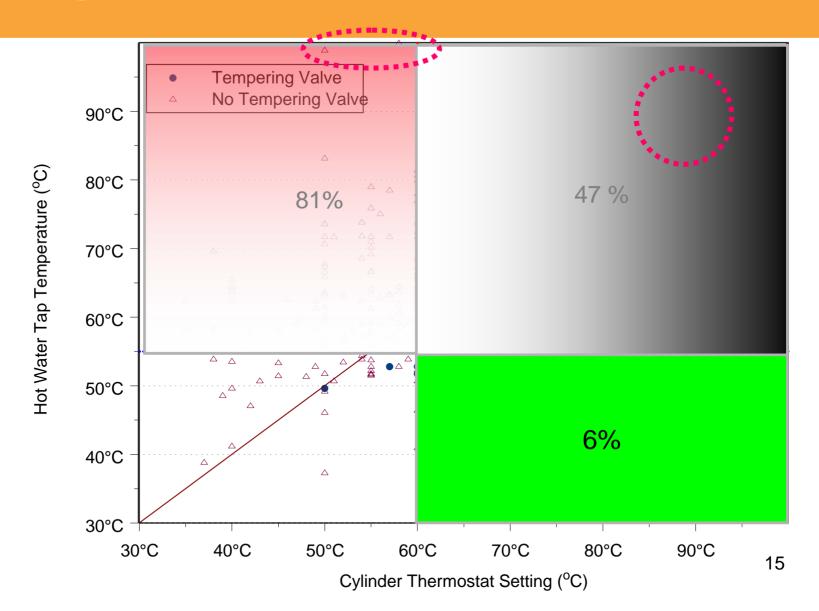
Reference line = $55^{\circ}C$

Delivered temp:	> 55°C	>60°C	
Gas Storage	79%	45%	
Gas Instant	33%	25%	
Electric Storage	83%	64%	
Elect. + solid	78%	54%	


- Most storage DHW >55°C
- More elect. storage >60°C

Current NZ Houses

- 16% A Grade: temp. limited
- Glass-on-steel: temp. limited



Water Temp. by Cylinder Volume

Dangerous Electric Hot Water

Hot, Hot (Electric) Water

- NZBC G12 Water Supply 2 goals
 - Legionella Store > 60 $^{\circ}$ C
 - Burns Deliver < 45°C Early Childhood, Old Age Homes & School Deliver $< 55^{\circ}C$ All other buildings
- 81% houses deliver water > 55°C = TOO HOT
 - Median tap temperature = 62°C (1% OVER 80°C) 🖄 🖄 🦄
- 'Tempering valve' solution
 - Mix cold & hot water to fixed (safe) temperature
 - Only required in 'new' installations
- But why do households need such 'hot' water ?
 - Electric storage cylinders: Demand **EXCEEDS** Supply
 - Trade-offs: Temperature vs. Volume vs. Element kW 16

Electric Cylinders & Losses

Volume (litres)	Insulation Grade	Actual Loss (kWh/day)	HEEP Sample #
135	A or B	2.1	51
	C or D	2.8	56
	Wrapped	1.8	9
180	A or B	2.2	76
	C or D	2.7	28
	Wrapped	2.1	10

How can these losses be reduced ?

Note: losses not normalised to match NZS4602 values

Improve efficiency

- Install a new cylinder; heat pump; solar
- Retrofit 'insulating blanket' (wool, fibreglass)
- Insulate pipework (NZS4305 minimum 2 metre)
- Fuel switch: direct burn gas

Energy Efficiency Opportunities

Measure –replace old D grade 180 litre electric cylinder	Installed Cost (\$)	Electric Savings (\$/yr)	Simple Payback (yr)
Electric			
Self installed wrap & pipe insulation	\$90	\$40	2
Cylinder wrap & pipe insulation	\$150	\$40	3
New A grade (180 I mains)	\$1,400	\$40	38
Heat pump DHW (310 I)	\$6,250	\$420	15
Solar (inc. new electric cylinder)	\$7,000	\$320	22
Gas (use 20% more hot water)			
New gas cylinder (152 litre)	\$2,200	\$240	9
New Gas instant (24 litre)	\$2,400	\$400	6
Gas condensing continuous (24 litre)	\$3,000	\$460	7

Assumptions: Electricity 20 c/kWh; Gas 11 c/kWh; Solar = 50% of hot water Installation: Gas \$1,000; Electric \$500-\$1000; Solar \$3,000 Efficiency: Heat pump 300%; Gas 80%; Condensing gas 95% ¹⁹ Year 11

Summary - DHW

- Average 29% of household energy (range 4% 74%)
- Fuel mix highly skewed
 - Electric (75% energy), Gas (20%), Wetbacks (5%)
 - NZ has highest % electric DHW of any country
 - DANGEROUS rod-type electric thermostats
- Social changes
 - Major shift in bathing to showers
- Energy Efficiency
 - Mains pressure = high flow NEED low flow showers
 - Cylinder wrap: cost effective 2 to 3 yr
- Potential benefits from direct use of gas
 - Gas +20% energy use over electric DHW system
 - Possibly unsatisfied demand for hot water
 - Fastest consumer payback