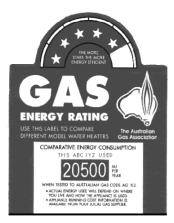
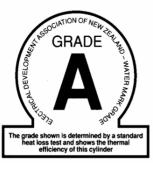




#### **Overview**


- Water heating fuels
- International comparison
- What drives hot water energy use?
- Standing losses
- Gas vs. electric hot water energy use
- Dangerously hot (electric) water
- Energy efficiency & fuel swap opportunities




### Hot water cylinders



Gas storac

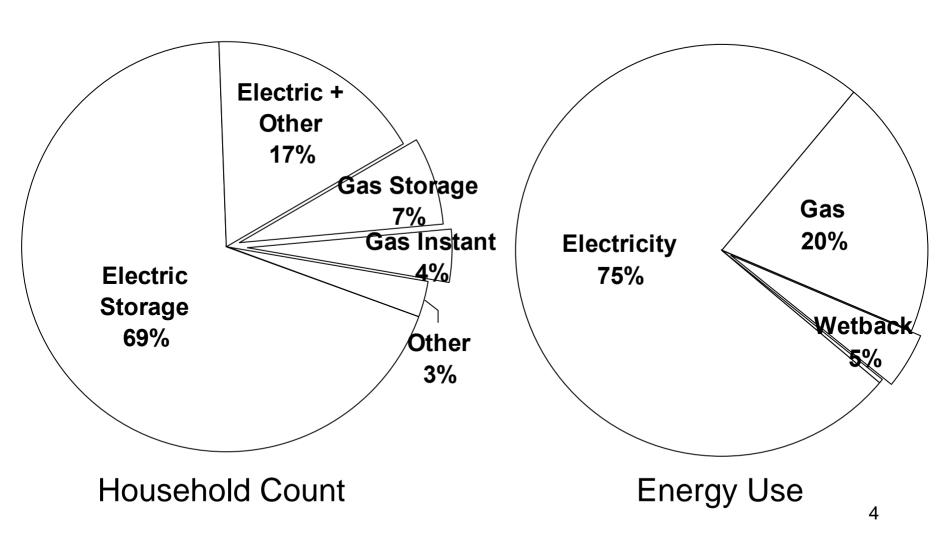






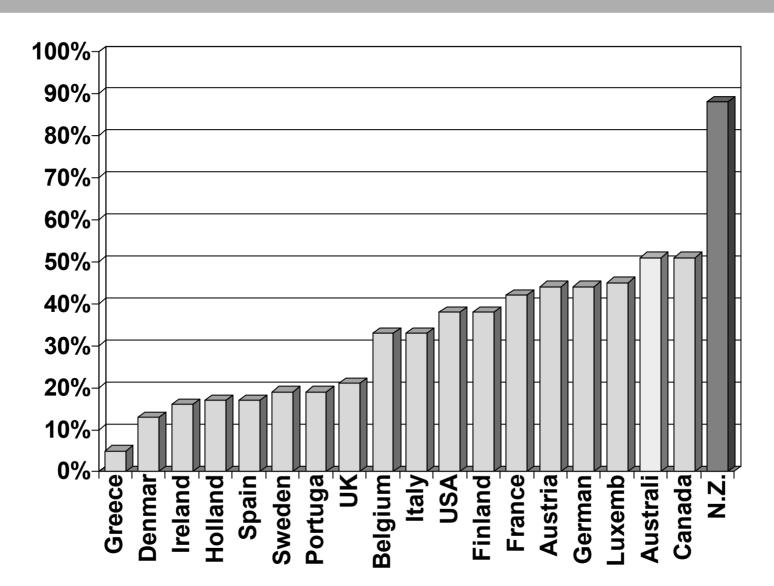
Electric Storage Electric Storage A Grade




C Grade



D Grade




# **Water Heating Fuels**





# 19 Country Comparison Use of Electric DHW





#### **Energy use distribution**

| Fuel        | Bottom 20% |          | Top 20%  |          |
|-------------|------------|----------|----------|----------|
|             | < kWh/yr   | % energy | > kWh/yr | % energy |
| Electricity | 1,600      | 9%       | 3,750    | 37%      |
| Gas         | 3,300      | 13%      | 7,300    | 27%      |
| Wetback     | 180        | 3%       | 1,200    | 55%      |
| All fuels   | 1,820      | 9%       | 4,300    | 37%      |

#### Bigger users use a lot more than small users

- Wetbacks show greatest skew
- Top 20% house each use ~ 2 x as Bottom 20%
- Water efficiency to reduce water & energy use



# Impact of Occupancy

| Occupancy | Average  | % Households |
|-----------|----------|--------------|
| (Person)  | (kWh/yr) |              |
| 1-3       | 2,590    | 56%          |
| Over 3    | 4,370    | 43%          |
| All       | 3,130    | 100%         |

#### 3+ person households use 70% more hot water

- Larger households use more hot water:
- ~90% 3+ households > 2,000 kWh/yr
- ~60% of 1-3 households > 2,000 kWh/yr

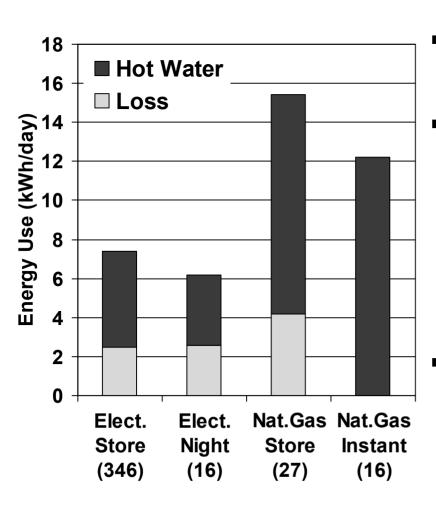


#### Search for NZ oldest cylinder

(Thanks to Radio NZ National, 'Sounds Historical')

| Date  | Туре             | Location       | In use    |
|-------|------------------|----------------|-----------|
| 1920s | Wetback          | Stewart Island |           |
| 1930s | Electric dairy   | Rahotu         |           |
| 1934  | Wetback          | Taranaki       | $\square$ |
| 1938  | Electric storage | Christchurch   | $\square$ |
| 1930s | Gas califont     | Otaki          |           |

- Copper, low pressure cylinders
  - LONG life (depend on water quality)
- Modern mains pressure, steel cylinders
  - Likely to have shorter life




### Changes over 35+ years

- Bathing habits changing away from bath
  - 1971/2: 74% Bath only, or bath ≥ shower
  - HEEP: 6%
  - Change from 'batch' to 'flow'
- Cylinder volume increasing
  - 1971/2: 56% 135 litre, 35% 180 litre
  - HEEP: 40% 45%
  - In 1990s 180 litre became more popular



### **Standing Losses**





#### Household Analysis

- Elect. Storage (346): 33% loss
- Elect. night store (16): 42% loss
- Nat. Gas Storage (27): 27% loss
- Nat. Gas Instant (16): 0% loss

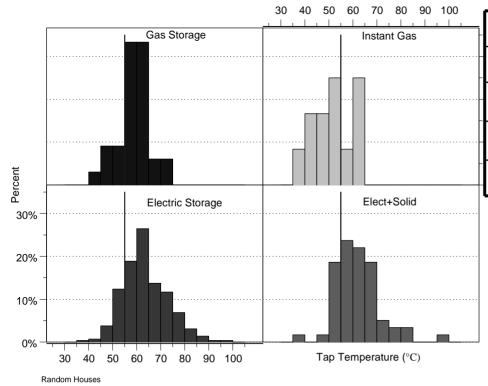
#### Does gas = more hot water?

- Graph is HEEP average
- e.g. few & many occupants
- Critical to understand data



### Gas vs. non-Gas energy use?

- Must compare on same basis
  - Standing losses
    4.2 gas vs. 2.5 elect kWh/day
  - Appliance efficiency80% vs. 100%
- Household differences (linear model, r<sup>2</sup> =42%)
  - Number occupants + 24%
  - Floor area + 13%
  - Life stage -3% to + 9%
  - Shower water use +14%
  - Use of gas +44%
- Linear model on same average house
  - Non-gas use = 2,100 kWh/yr
  - Increase = 981 kWh/yr \* **44%** = 414 kWh/yr
- Gas = +20% hot water energy



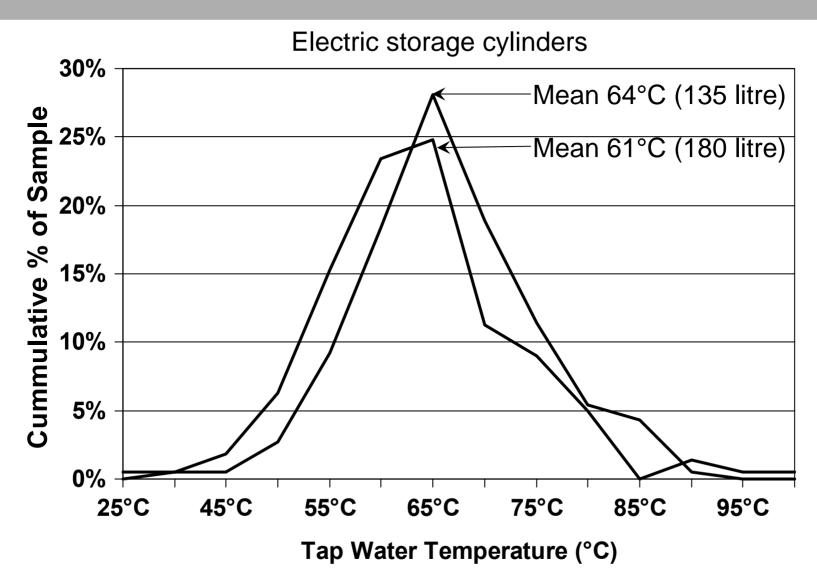

#### Other Differences Gas vs. Electric

- Fuel type & service
  - 78% low pressure water (mainly electric)
  - 22% mains pressure water (mainly gas)
- Measured shower flow rates:
  - Low pressure7 l/min (avg)20 l/min (max)
  - Mains pressure 12.5 l/min (avg) 30 l/min (max)
- Higher pressure = higher flow = more energy
- Reduce 18 I/min to 9 I/min for 5 min shower
  - Save: 18 c/shower energy + 16.2 c/shower (water)
  - 34 c/ shower = \$124 per year per daily shower
  - Low-flow shower head ~ \$40



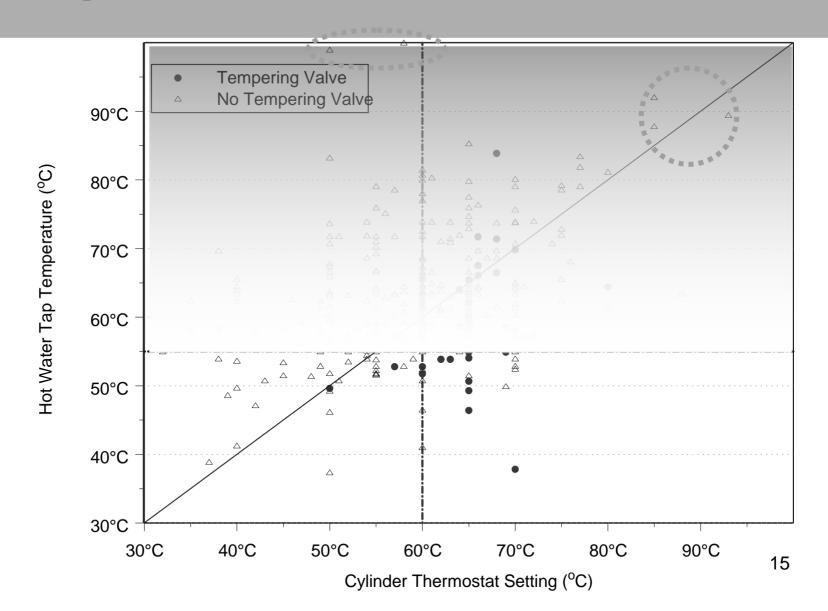
### Water Temperature & Fuels




Reference line =  $55^{\circ}$ C

| Delivered temp:  | > 55°C | >60°C |  |
|------------------|--------|-------|--|
| Gas Storage      | 79%    | 45%   |  |
| Gas Instant      | 33%    | 25%   |  |
| Electric Storage | 83%    | 64%   |  |
| Elect. + solid   | 78%    | 54%   |  |

- Most storage DHW >55°C
- More elect. storage >60°C
- Current NZ Houses
  - 16% A Grade: temp. limited
  - Glass-on-steel: temp. limited




#### Water Temp. by Cylinder Volume





# **Dangerous Electric Hot Water**





# Hot, Hot (Electric) Water

- NZBC G12 Water Supply 2 goals
  - Legionella Store > 60 °C
  - Burns Deliver < 45°C</li>

Early Childhood, Old Age Homes & School

Deliver < 55°C

All other buildings

- 81% houses deliver water > 55°C = TOO HOT



- 'Tempering valve' solution
  - Mix cold & hot water to fixed (safe) temperature
  - Only required in 'new' installations
- But why do households need such 'hot' water?
  - Electric storage cylinders: Demand EXCEEDS Supply
  - Trade-offs: Temperature vs. Volume vs. Element kW 16



# **Electric Cylinders & Losses**

| Volume<br>(litres) | Insulation<br>Grade | Actual<br>Loss<br>(kWh/day) | HEEP<br>Sample # |
|--------------------|---------------------|-----------------------------|------------------|
| 135                | A or B              | 2.1                         | 51               |
|                    | C or D              | 2.8                         | 56               |
|                    | Wrapped             | 1.8                         | 9                |
| 180                | A or B              | 2.2                         | 76               |
|                    | C or D              | 2.7                         | 28               |
|                    | Wrapped             | 2.1                         | 10               |

How can these losses be reduced?

17



#### Reducing Electric Cylinder Losses







#### Improve efficiency

- Install a new cylinder; heat pump; solar
- Retrofit 'insulating blanket' (wool, fibreglass)
- Insulate pipework (NZS4305 minimum 2 metre)
- Fuel switch: direct burn gas



#### **Energy Efficiency Opportunities**

| Measure –replace old D grade<br>180 litre electric cylinder | Installed<br>Cost<br>(\$) | Electric<br>Savings<br>(\$/yr) | Simple<br>Payback<br>(yr) |
|-------------------------------------------------------------|---------------------------|--------------------------------|---------------------------|
| Electric                                                    |                           |                                |                           |
| Self installed wrap & pipe insulation                       | \$90                      | \$40                           | 2                         |
| Cylinder wrap & pipe insulation                             | \$150                     | \$40                           | 3                         |
| New A grade (180 I mains)                                   | \$1,400                   | \$40                           | 38                        |
| Heat pump DHW (310 I)                                       | \$6,250                   | \$420                          | 15                        |
| Solar (inc. new electric cylinder)                          | \$7,000                   | \$320                          | 22                        |
| Gas (use 20% more hot water)                                |                           |                                |                           |
| New gas cylinder (152 litre)                                | \$2,200                   | \$240                          | 9                         |
| New Gas instant (24 litre)                                  | \$2,400                   | \$400                          | 6                         |
| Gas condensing continuous (24 litre)                        | \$3,000                   | \$460                          | 7                         |

Assumptions: Electricity 20 c/kWh; Gas 11 c/kWh; Solar = 50% of hot water

Installation: Gas \$1,000; Electric \$500-\$1000; Solar \$3,000

Efficiency: Heat pump 300%; Gas 80%; Condensing gas 95%

19



### **Summary - DHW**

- Average 29% of household energy (range 4% 74%)
- Fuel mix highly skewed
  - Electric (75% energy), Gas (20%), Wetbacks (5%)
  - NZ has highest % electric DHW of any country
  - DANGEROUS rod-type electric thermostats
- Social changes
  - Major shift in bathing to showers
- Energy Efficiency
  - Mains pressure = high flow NEED low flow showers
  - Cylinder wrap: cost effective 2 to 3 yr
- Potential benefits from direct use of gas
  - Gas +20% energy use over electric DHW system
  - Possibly unsatisfied demand for hot water
  - Fastest consumer payback