
Retrofitting NZ houses for energy efficiency and comfort

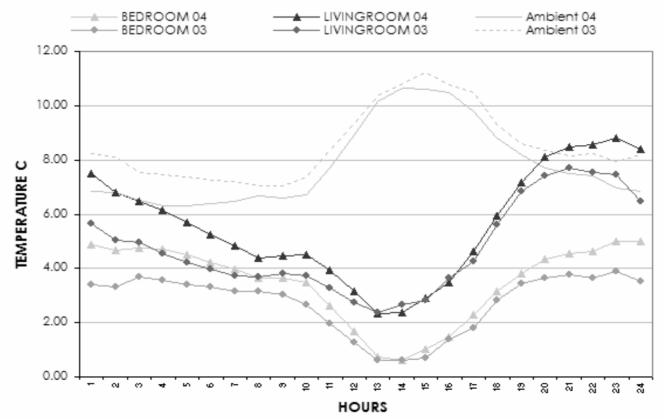
Bob Lloyd & Maria Callau

A research project by the Energy Management Group Physics Department - University of Otago Dunedin Funded by FRST

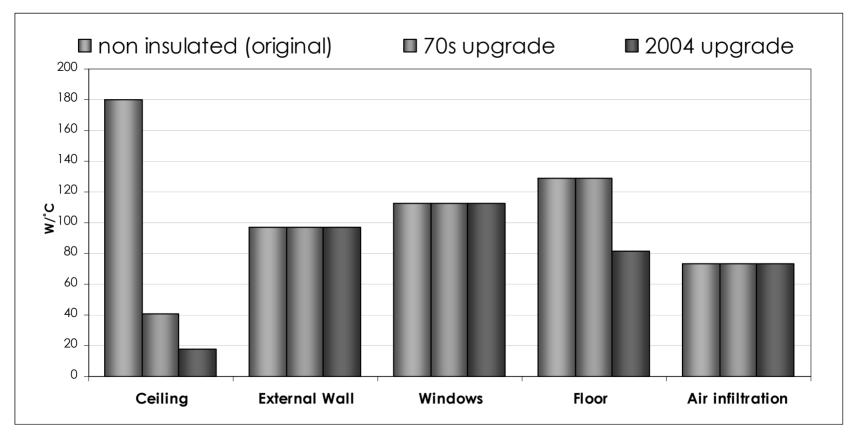
Process

Objective

 To identify improvements in houses participating in the Energy Efficient Upgrade Programme in southern New Zealand regions.


Upgrade Programme

- Started in 2002 / Ongoing for 7 years
- 400 pre 1978 houses per year in southland
- Focus on the weatherization of the building envelope:
 - FLOOR and CEILING insulation
 - Draughts stopping
 - Insulating the hot water cylinders
- All houses had been retrofitted with ceiling insulation during '70s (Macerated Paper)
- Two Samples of 50 houses each were monitored over 2 years period while the programme was being implemented.


Net Temp Differences - June

- Higher net differences were achieved in living areas after heating was applied to this houses after upgraded
- 5% improvement in the number of hours above 12°C in June

Heat losses through the building envelope

• Small reduction in % Ceiling losses after last upgrade

Findings

Temperatures

- Low indoor temperatures predominated in winter... <12 °C for 48% of the time during winter
- Minimum temperatures between 5 and 5.4 ° C (sample averages)
- Some improvement was found in net temperature difference after heating is applied (0.4 °C whole year & 0.6 °C over winter months).

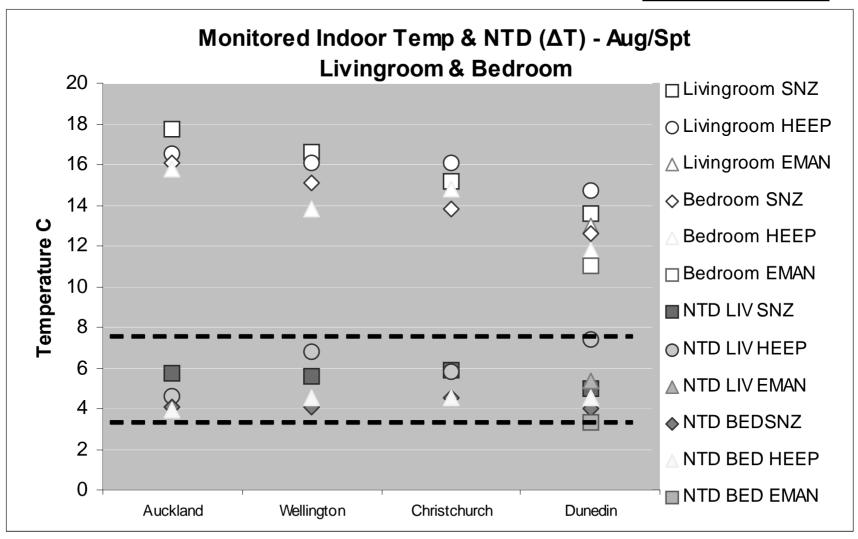
Findings

Energy Use for Space Heating

- Little energy was applied for space heating
- The occupants tended not to heat the entire house
- A small reduction in energy consumption was apparent after the upgrade (7%)
- High losses occurred through uninsulated walls and single glazed windows

The HNZC upgrade programme in Dunedin failed to make houses sufficiently warm to satisfy WHO recommendations

<u>Findings</u>


Reasons were found to be:

- The impact of an earlier 70's retrofit did not seem to be taken into account
- High losses occur through uninsulated walls and single glazing windows.
- People don't heat enough

Results

Comparison of Stats NZ, BRANZ HEEP, Philippa's "Healthy

HousesStudy"and our results

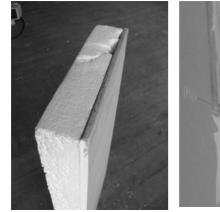
- Standard upgrade packages give between 0.4
 °C and 0.8 °C improvement in annual average temperatures
- Code compared to un-insulated gives around double this increase
- Net temperature differences are around 4 °C for bedrooms and 6 °C for living areas
- This means by the time you get to the South Island the times when indoor temperatures are lower than 16 °C are appreciable, lower than 18 °C often and lower than 20 °C mostly.

Thus we need to go to the next step

- We "borrowed" 2 houses from HNZC.
- To further improve both houses, we have installed different insulation materials, available in the market, to insulate the building envelope.
- Houses were monitored to identify the increase in the thermal resistance of the building envelope at each stage.
- Houses located in Brockville

House 1

- Masonry veneer house:
 - concrete block
 - single glazed wooden frame
 - tiled roof
- Multi fuel burner in the living area
- upgraded with the HNZC standard upgrade package



 Aluminium foil was replaced by EPS

Underfloor & Windows

- Double glazed aluminum framed windows
- Drapes with pelmets

The Walls

- EPS & GIB on top of existing exterior walls.
- Window sill was done with new thickness required.

Whole house calorimetry

- Specific thermal losses determined through the building envelope
- Houses were heated to achieve steady state then ΔT and P were recorded.
- Monitoring was done under the following conditions:
 - Night time (no solar gains)
 - Unoccupied (no internal gains / no evaporative gains)
 - ACH was known using a "blower door" test
 - Energy input was monitored
 - Envelope area was known
 - AT was monitored

U & R values were found

Monitoring: The equipment

- Indoor temperature and RH was monitored by placing data loggers in each room.
- A local weather station was installed in the roof.
- Data collected was downloaded to computer.
- Electric heaters were used to rise indoor temperatures.
- Fans were installed to generate internal air movement.
- A Blower door test was used to quantify the amount of ACH after each test.

Results

Calculated lumped R value for house 1

(including infiltration)

•	Uninsulated	0.40

 Standard package (0.66
--	------

 Our package 	1.15
---------------------------------	------

Measured lumped R value for house 1 improved from

• Uninsulated	Not known
---------------	-----------

•	Standard	package	0.67
---	----------	---------	------

Our package 0.99


Regulation/Calculated 0.80

Cost of the upgrades came to around \$120 /m² of envelope area

What does this mean in terms of energy consumption?

Annual Heating Requirement - House 1

<u>Acknowledgments</u>

- F.R.S.T of New Zealand for funding this research
- H.N.Z.C. for providing access to the houses
- BRANZ for support and advice
- BRYAN SMAIL for upgrading the houses

